direct product, abelian, monomial, 2-elementary
Aliases: C22×C24, SmallGroup(96,176)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C24 |
C1 — C22×C24 |
C1 — C22×C24 |
Generators and relations for C22×C24
G = < a,b,c | a2=b2=c24=1, ab=ba, ac=ca, bc=cb >
Subgroups: 76, all normal (12 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C2×C4, C23, C12, C12, C2×C6, C2×C8, C22×C4, C24, C2×C12, C22×C6, C22×C8, C2×C24, C22×C12, C22×C24
Quotients: C1, C2, C3, C4, C22, C6, C8, C2×C4, C23, C12, C2×C6, C2×C8, C22×C4, C24, C2×C12, C22×C6, C22×C8, C2×C24, C22×C12, C22×C24
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 25)(23 26)(24 27)(49 92)(50 93)(51 94)(52 95)(53 96)(54 73)(55 74)(56 75)(57 76)(58 77)(59 78)(60 79)(61 80)(62 81)(63 82)(64 83)(65 84)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 91)
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 71)(10 72)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 79)(26 80)(27 81)(28 82)(29 83)(30 84)(31 85)(32 86)(33 87)(34 88)(35 89)(36 90)(37 91)(38 92)(39 93)(40 94)(41 95)(42 96)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
G:=sub<Sym(96)| (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,25)(23,26)(24,27)(49,92)(50,93)(51,94)(52,95)(53,96)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79)(61,80)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;
G:=Group( (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,25)(23,26)(24,27)(49,92)(50,93)(51,94)(52,95)(53,96)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79)(61,80)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );
G=PermutationGroup([[(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,25),(23,26),(24,27),(49,92),(50,93),(51,94),(52,95),(53,96),(54,73),(55,74),(56,75),(57,76),(58,77),(59,78),(60,79),(61,80),(62,81),(63,82),(64,83),(65,84),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,91)], [(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,71),(10,72),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,79),(26,80),(27,81),(28,82),(29,83),(30,84),(31,85),(32,86),(33,87),(34,88),(35,89),(36,90),(37,91),(38,92),(39,93),(40,94),(41,95),(42,96),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])
C22×C24 is a maximal subgroup of
C24.98D4 (C2×C24)⋊5C4 C12.9C42 C12.10C42 C12.12C42 Dic3⋊C8⋊C2 C23.27D12 (C22×C8)⋊7S3 C24⋊33D4 C23.28D12 C24⋊30D4 C24⋊29D4 C24.82D4
96 conjugacy classes
class | 1 | 2A | ··· | 2G | 3A | 3B | 4A | ··· | 4H | 6A | ··· | 6N | 8A | ··· | 8P | 12A | ··· | 12P | 24A | ··· | 24AF |
order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
96 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C8 | C12 | C12 | C24 |
kernel | C22×C24 | C2×C24 | C22×C12 | C22×C8 | C2×C12 | C22×C6 | C2×C8 | C22×C4 | C2×C6 | C2×C4 | C23 | C22 |
# reps | 1 | 6 | 1 | 2 | 6 | 2 | 12 | 2 | 16 | 12 | 4 | 32 |
Matrix representation of C22×C24 ►in GL3(𝔽73) generated by
1 | 0 | 0 |
0 | 72 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 72 | 0 |
0 | 0 | 72 |
63 | 0 | 0 |
0 | 3 | 0 |
0 | 0 | 72 |
G:=sub<GL(3,GF(73))| [1,0,0,0,72,0,0,0,1],[1,0,0,0,72,0,0,0,72],[63,0,0,0,3,0,0,0,72] >;
C22×C24 in GAP, Magma, Sage, TeX
C_2^2\times C_{24}
% in TeX
G:=Group("C2^2xC24");
// GroupNames label
G:=SmallGroup(96,176);
// by ID
G=gap.SmallGroup(96,176);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-2,-2,144,88]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^24=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations